• Skip to main content
itrc_logo

Bioavailability of Contaminants in Soil: Considerations for Human Health Risk Assessment

Navigating this Website
1 Introduction
1 Introduction Overview
1.1 Using Bioavailability Information
1.2 Background
1.3 Definition of Terms
2 Regulatory Background
2 Regulatory Background Overview
2.1 Current Practices: Survey of State Regulators
3 Technical Background
3 Technical Background Overview
3.1 Soil Mineral Phases
3.2 Soil pH, Organic Matter, and Reactive Clay Minerals
3.3 Soil Particle Size
4 Decision Process
4 Decision Process Overview
4.1 Decision Process Flowchart
4.2 Is there a Method Available?
4.3 Could Bioavailability Assessment Affect the Remedial Decisions?
4.4 Do the Benefits of Bioavailability Assessment Justify the Costs?
4.5 Further Considerations
5 Methodology
5 Methodology for Evaluating Contaminant Oral Bioavailability Overview
5.1 In Vivo Approach
5.2 In Vitro Approach
6 Lead
6 Lead Overview
6.1 Fate and Transport
6.2 Toxicology and Exposure
6.3 Methodology for Quantifying RBA of Lead in Soil
6.4 When Does a Bioavailability Study Make Sense?
6.5 Case Studies
6.6 Using Bioavailability Methods to Evaluate Remedies (Bioavailability-Based Remediation)
7 Arsenic
7 Arsenic Overview
7.1 Fate and Transport
7.2 Toxicology and Exposure
7.3 Methodology for Evaluating Arsenic Bioavailability
7.4 When Does It Make Sense to Use Bioavailability?
7.5 Case Studies
7.6 Using Bioavailability Methods to Evaluate Remedies (Bioavailability Based Remediation)
8 PAHs
8 Polycyclic Aromatic Hydrocarbons (PAHs) Overview
8.1 PAH Sources and Exposure
8.2 General Toxicity of PAHs
8.3 Influences of Soil on Bioavailability of PAH
8.4 Methodology for Evaluating PAH Bioavailability
8.5 Dermal Absorption
8.6 Amendment Strategies and Permanence of Bioavailability
8.7 Case Study
9 Risk Assessment
9 Using Bioavailability Information in Risk Assessment Overview
9.1 Risk Calculations
9.2 Other Considerations and Limitations
10 Stakeholder Perspectives
10 Stakeholder Perspectives Overview
10.1 Stakeholder Concerns
10.2 Specific Tribal Stakeholder Concerns
10.3 Stakeholder Engagement
11 Case Studies
11 Case Studies Overview
11.1 Arsenic, Mining, CA
11.2 Arsenic, Pesticide, AR
11.3 Arsenic, Naturally occurring, UT
11.4 Arsenic, Smelter, AZ
11.5 Arsenic-contaminated tailings, OR
11.6 Lead, Industrial, Midwest US
11.7 PAH, Skeet targets, TX
11.8 Arsenic, Copper precipitation, UT
11.9 Arsenic, CCA wood preservative, CA
11.10 Arsenic, MGP coal ash, MI
11.11 Lead, Mining MT
11.12 Lead, Mining, MT
11.13 Lead, Smelter, UT
Additional Information
Review Checklist
Appendix A: Detailed Survey Responses
Appendix B: Chemical Reactions of Metals
Acronyms
Glossary
Acknowledgments
Team Contacts
Document Feedback

 

Bioavailability of Contaminants in Soil
HOME

8 Polycyclic Aromatic Hydrocarbons (PAHs)

Polycyclic aromatic hydrocarbons (PAHs) are among the most common chemicals of concern at contaminated sites and, as with lead and arsenic, there is considerable interest in incorporating PAH bioavailability estimates in human health risk assessments. The development of methods for estimating PAH bioavailability, however, has lagged considerably behind methods for lead and arsenic because assessing bioavailability for this class of compounds is complex. Also, in contrast to lead and arsenic, dermal absorption is potentially a significant contributor to risk. There are no consensus models for estimating PAH bioavailability at present, but promising approaches are beginning to appear in the literature. This section describes the nature of PAHs, how they are introduced to the environment, methodologic issues related to estimating their bioavailability and bioaccessibility for soil from both oral and dermal routes of exposure, and an overview of studies that have been performed to date to estimate PAH bioavailability.

PAHs are stable, neutral, aromatic organic chemicals consisting of numerous carbon atoms configured to form multiple rings. There are more than 10,000 different PAH compounds. Pure PAHs usually exist as colorless, white, or pale yellow-green solids. Many reference sources for chemical properties of PAHs are available in Section 2.4 of the Regional Screening Table User’s Guide (USEPA 2017d). The general characteristics of PAHs are high melting and boiling points, low vapor pressures, and very low aqueous solubilities. PAHs are generally soluble in organic solvents and can accumulate in fats because they are highly lipophilic.

image_pdfPrint this page/section



BCS

web document
glossaryBCS Glossary
referencesBCS References
acronymsBCS Acronyms
ITRC
Contact Us
About ITRC
Visit ITRC
social media iconsClick here to visit ITRC on FacebookClick here to visit ITRC on TwitterClick here to visit ITRC on LinkedInITRC on Social Media
about_itrc
Permission is granted to refer to or quote from this publication with the customary acknowledgment of the source (see suggested citation and disclaimer). This web site is owned by ITRC • 1250 H Street, NW • Suite 850 • Washington, DC 20005 • (202) 266-4933 • Email: [email protected] • Terms of Service, Privacy Policy, and Usage Policy ITRC is sponsored by the Environmental Council of the States.