References


http://www.bgs.ac.uk/barge/home.html.


Bowell, R. J., and D. Craw. 2014. “The management of arsenic in the mining industry.” In Arsenic: Environmental


Drexler, J. 2010. “University of Colorado-Boulder LEGS.”


commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo arsenic relative bioavailability in contaminated soils.” *Environmental Science & Technology* 43:9887-9894.


USEPA. 1994e. “Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities.” OSWER


USEPA. 2002a. “Memorandum. Subject: Role of Background in the CERCLA Cleanup Program.” OSWER 9285.6-07P. Washington, D.C.

USEPA. 2002b. “Midvale Slag Superfund Site Operable Unit 2 Midvale, Utah Record of Decision.”


https://semspub.epa.gov/work/HQ/175416.pdf

https://semspub.epa.gov/work/HQ/175333.pdf


USEPA. 2009a. “Region 8 and Utah Division of Environmental Response and Remediation Technical Memorandum: Technical conclusions on appropriateness to leave Bingham Magna Ditch sediment with elevated concentrations of arsenic at depth below current surface grade.


https://semspub.epa.gov/work/HQ/174554.pdf


USEPA. 2010g. “Silver Bow Creek/Butte Area Residential Metals Abatement Program (RMAP).” Bulletin #1.


USEPA. 2013c. “Lead at Superfund Sites: Risk Assessments.”

USEPA. 2013d. “Method 1340 In vitro bioaccessibility assay for lead in soil.”


USEPA. 2014b. “Region 8 Final Close-out Report Midvale Slag Superfund Site, Midvale, UT.”


USEPA. 2016a. “All-Ages Lead Model (ALM) version 1.05 (External Draft Report).”


