References


http://www.bgs.ac.uk/barge/home.html.


Bowell, R. J., and D. Craw. 2014. “The management of arsenic in the mining industry.” In Arsenic: Environmental


Drexler, J. 2010. “University of Colorado-Boulder LEGS.”


NRC. 2009. “Science and Decisions: Advancing Risk Assessment.” Committee on Improving Risk Analysis Approaches


natural systems. New York: John Wiley & Sons, Inc.


Turkall, R. M., M. S. Abdel-Rahman, and G. Skowronski. 2010. Effects of soil matrix and aging on the dermal bioavailability of hydrocarbons and metals in the soil: Dermal bioavailability of soil contaminants, ScholarWorks@UMass Amherst. Amherst, MA.


USEPA. 1994e. “Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities.” OSWER
and Emergency Response.


USEPA. 2009a. “Region 8 and Utah Division of Environmental Response and Remediation Technical Memorandum: Technical conclusions on appropriateness to leave Bingham Magna Ditch sediment with elevated concentrations of arsenic at depth below current surface grade.


USEPA. 2010g. “Silver Bow Creek/Butte Area Residential Metals Abatement Program (RMAP).” Bulletin #1.


USEPA. 2013d. “Method 1340 In vitro bioaccessibility assay for lead in soil.”


USEPA. 2014b. “Region 8 Final Close-out Report Midvale Slag Superfund Site, Midvale, UT.”


USEPA. 2017g. “Validation Assessment of In Vitro Arsenic Bioaccessibility Assay for Predicting Relative Bioavailability of Arsenic in Soils and Soil-like Materials at Superfund Sites.” OLEM 9355.4-29. Washington, D.C.


USEPA. n.d. “Memorandum from Christopher P. Weis, PhD, DABT, Regional Toxicologist to Stan Christensen, RPM Midvale Slag Site.” Evaluation of risk-based PRGs for commercial/industrial development of the slag piles at the Midvale Slag NPL site, Midvale, UT. Ref: BEPR-PS.


