References


Bowell, R. J., and D. Craw. 2014. “The management of arsenic in the mining industry.” In Arsenic: Environmental...


Drexler, J. 2010. “University of Colorado-Boulder LEGS.”


commonly employed in vitro arsenic bioaccessibility assays for predicting in vivo arsenic relative bioavailability in contaminated soils.” *Environmental Science & Technology* 43:9887-9894.


NRC. 2009. “Science and Decisions: Advancing Risk Assessment.” *Committee on Improving Risk Analysis Approaches*


Stumm, W. 1992. Chemistry of the solid-water interface: Processes at the mineral-water and particle-water interface in
natural systems. New York: John Wiley & Sons, Inc.


Turkall, R. M., M. S. Abdel-Rahman, and G. Skowronski. 2010. Effects of soil matrix and aging on the dermal bioavailability of hydrocarbons and metals in the soil: Dermal bioavailability of soil contaminants, ScholarWorks@UMass Amherst. Amherst, MA.


USEPA. 1994e. “Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities.” OSWER
and Emergency Response.


USEPA. 2009a. “Region 8 and Utah Division of Environmental Response and Remediation Technical Memorandum: Technical conclusions on appropriateness to leave Bingham Magna Ditch sediment with elevated concentrations of arsenic at depth below current surface grade.


USEPA. 2010g. “Silver Bow Creek/Butte Area Residential Metals Abatement Program (RMAP).” Bulletin #1.


